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By the “passive equations” of physics I mean those equations 
which describe the motion of a small object in the presence of 
a force field where we ignore the effect produced by this small 
object. For example, Newton’s laws say that any two objects 
attract one another. But if we study the motion of a ball or a
rocket in the gravitational field of the earth, we ignore the tiny
effect that the ball or rocket  has on the motion of the earth.

If we have a small charged particle in an electromagnetic field,
the Lorentz equations describe the motion of the particle when
we ignore the field produced by the motion of the particle itself.

To explain what I mean by “general covariance” will take the 
whole lecture. 
    



  

The source of today’s lecture is a 
late (1938) paper by Einstein, 

Infeld and Hoffman.



  

I was unable to find on the web a picture of E., I., &H. but 
here is a photo of Einstein, Infeld,  and Bergmann from 1938.



  

The E I H paper is technically difficult to read because it was 
written before the appropriate mathematical language (the 
theory of generalized functions) was developed. The person 
who extracted the key idea from this paper in the modern 
mathematical language was J. M. Souriau in 1974 who 
applied the EIH method to determine the equations of motion 
of a spinning charged particle in an electromagnetic field.

My purpose today is to explain how the E I H method as
formulated for spinning particles by Souriau can be viewed as 
a principle for determining the passive equations of physics in 
a very general setting.



  

The Souriau paper.



  

Souriau’s paper is itself not an 
easy read. He has a wonderful but 
idiosyncratic mode of exposition. 
For example, here is the flow 
chart for the paper presented on 
page 2:



  



  

Jean Marie Souriau



  

Back to the E I H paper:

What is this “fundamentally simple question” ?



  

The two principles of general 
relativity:

• The distribution of energy-matter 
determines the geometry of space time.

• A “small” piece of ponderable matter moves 
along a “geodesic” in the geometry 
determined as above. I will spend some 
time in today’s lecture explaining the 
meanings of the word “geodesic”.



  

The Einstein, Infeld, Hoffmann 
question is - what is the relation 
(if any) between these two 
principles? Many distinguished 
physicists thought that these were 
two independent principles.



  

Einstein’s comment on the first 
principle:

People slowly accustomed 
themselves to the idea that the 
physical states of space itself 
were the final physical reality.



  



  



  

What is a geodesic?

Before the EIH paper and the Souriau paper there were several
(equivalent) definitions of a what a geodesic is. They all try to 
extend to more general geometries a characteristic property  
that straight lines have in Euclidean geometry:

•  A straight line is the “shortest distance between two points”.
•  A straight line is “self-parallel” in the sense that it always points in 
the same direction at all its points. A curved line will (in general) be 
pointing in different directions at different points. 



  

On a sphere, the shortest distance is a 
piece of a great circle.

Here is a sphere drawn with 
Matlab:



  

Here is a curve on the sphere 
starting at the north pole.



  

Notice that the great circles emanating from the north pole 
(the circles of longitude) are consistently shorter than the 
corresponding piece of the curve.



  

View from the top:

Notice that from this point of view, the circles of longitude look 
almost  like straight lines, and these lines are perpendicular to 
the circles of latitude.This is an illustration of a special case of 
what is known as Gauss’ lemma  although in a sense this was 
anticipated  by al Biruni. 



  

Abu Arrayhan Muhammad 
ibn Ahmad al-Biruni

Born: 15 Sept 973 in Kath, Khwarazm (now Kara-Kalpakskaya, Uzbekistan)
Died: 13 Dec 1048 in Ghazna (now Ghazni, Afganistan)



  

The book The history of cartography details the mathematical contributions of
al-Biruni. These include: theoretical and practical arithmetic, summation of series,
 combinatorial analysis, the rule of three, irrational numbers, ratio theory, 
algebraic definitions, method of solving algebraic equations, geometry, 
Archimedes' theorems, trisection of the angle and other problems which cannot be 
solved with ruler and compass alone, conic sections, stereometry, 
stereographic projection, trigonometry, the sine theorem in the plane, and solving
 spherical triangles.

Important contributions to geodesy and geography were also made by al-Biruni. 
He introduced techniques to measure the earth and distances on it using triangulation. 
He found the radius of the earth to be 6339.6 km, a value not obtained in the West until
 the 16th century. His Masudic canon contains a table giving the coordinates 
of six hundred places, almost all of which he had direct knowledge. Not all, however,
 were measured by al-Biruni himself, some being taken from a similar table given by 
al-Khwarizmi.   al-Biruni seemed to realise that for places
given by both al-Khwarizmi and Ptolemy, the value obtained by al-Khwarizmi is the 
more accurate. Al-Biruni also wrote a treatise on time-keeping, wrote several treatises on 
the astrolabe and describes a mechanical calendar. He makes interesting observations on
 the velocity of light, stating that its velocity is immense compared with that of sound. 
He also describes the Milky Way as
          ... a collection of countless fragments of the nature of nebulous stars.



  

Gauss and Riemann.
The geometry of surfaces, especially the “intrinsic” geometry of 
surfaces, those properties of surfaces which are independent of how 
they are embedded in Euclidean space, was developed by Gauss. But 
the full higher dimensional notion of intrinsic geometry of a possibly 
curved space was developed by his student Riemann. The equations for 
geodesics as curves which locally minimize arc length plays a key role 
in this theory. It was Riemann’s theory of the curvature of such spaces 
which played a key role in Einstein’s theory of general relativity.



  

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)
Died: 23 Feb 1855 in Göttingen, Hanover (now Germany)



  

Georg Friedrich Bernhard Riemann

Born: 17 Sept 1826 in Breselenz, Hanover (now Germany)
Died: 20 July 1866 in Selasca, Italy



  

Parallelism along curves.
Can we attach a meaning to the assertion that two vectors tangent to 
the sphere at two different points p and q  are parallel? The answer to 
this question is no . However it does make sense if we join  p  to q by 
a curve:  Let  c  be a curve on the sphere which starts at  p  and ends 
at  q . Place the sphere on a plane so that it just touches the plane at p. 
If  u  is a vector tangent to the sphere at  p  we can also think of  u as 
being a vector  U   in the plane, since this plane is tangent to the 
sphere at  p . Now roll the sphere on the plane along the curve c . This 
will give us a curve  C  in the plane, and at the end of this process we 
end up with the point  q  touching the plane. A tangent vector  v  at q 
can be thought of as being a vector  V  in the plane. 

We say that  u and v  are parallel along  c  if the vectors  U  and  V  
are parallel in the plane.  This notion of parallelism depends on the 
choice of the curve. A different curve joining  p   to  q   will give a 
different criterion for when vectors at  p  and  q  are parallel.



  

Geodesics as self-parallel curves.

We now can define geodesics to be self-parallel curves - curves c 
which have the property that  when you perform the rolling process 
the curve  C  that you get in the plane is a (piece of) a straight line.  
For the sphere, the curves  c   which roll out to straight lines in the 
plane are exactly the great circles. But we can make this definition 
for any curve on any surface.  

It is then a mathematical theorem that this definition of geodesics, as 
curves which roll out to straight lines, coincides with the earlier 
definition of geodesics as curves which locally minimize arc length.



  

What about more general spaces such as those considered by Riemann?  

Here the key result is due to Levi-Civita who introduced a general 

concept of parallelism of vectors along curves and showed that

 for a Riemannian manifold there is a unique such notion with

 certain desirable properties, and that the self-parallel curves are exactly 

the geodesics in Riemann’s sense.



  

Tullio Levi-Civita

Born: 29 March 1873 in Padua, Veneto, Italy
Died: 29 Dec 1941 in Rome, Italy



  

Back to the EIH paper again.

The question is: what do the “relativistic equations of gravitation” 
have to do with the equations which determine geodesics? In order to 
understand the EIH-Souriau answer to this question, we really do not 
need to know in detail what the “relativistic equations of gravitation”  
are. (This would require a whole course in general relativity.) All that 
we need to know is something very general about the form of these 
equations, in particular the symmetry which is built in to these 
equations. It is an amazing fact that these symmetry conditions 
alone determine the equations for geodesics. 

For this we need to state some elemenary  facts about constraints 
imposed by symmetry.



  

Constraints imposed by 
symmetry.



  



  

x  and  gx.



  

Orbits.



  

Exceptional orbits.



  

General formulation.

Suppose that   X  is a set (or object)  and  G  is a  group of 
symmetries of  X.  If  x  is a point of  X  and  g  in  G  is a 
symmetry, then we let  gx  denote the point of  X  obtained 
from  x  by applying the symmetry  g.  We let  Gx  denote the 
collection of all such points  gx  and  call  Gx  the orbit  of  x 
under the symmetries G.

Then if  F is a (say) numerical function on  X  which is 
invariant under the action of  G, then  F  must take on a 
constant value on each orbit.



  

Example: Rotations.
Suppose that   X  is ordinary three dimensional space with a 
preferred point  O   as origin,  and  G  consists of all rotations 
about  O . If  x  is a point different from  O  then the orbit  Gx is 
the sphere of radius  r  where   r  is the distance from  O  to x .  If 
x = O   then the orbit  Gx  consists of the single point  O . So the 
orbits are spheres centered about  O  with the exception of the 
single orbit consisting of one point  O  . Notice that in this 
example the (sphere) orbits each form a continuous manifold of 
points rather than a discrete collection of points as in the 
preceding examples.

Our symmetry conserving condition says that if  F  is a function 
which is invariant under  G then  F  must be constant on each of 
these spheres.  



  

Orbits of the rotation group are 
concentric spheres.



  

Here is a picture of a function  F (the intensity of the blue) which
is constant along each curve in a family. We wish to examine the 
infinitesimal change in  F  (or as we say the differential (change) 
of F) at any point. 



  

The infinitesimal change     of  F   
vanishes on tangents to the orbits.



  

Another picture



  

Repeat of statement:



  

The punch line: The EIHS 
equations for a geodesic.



  

The punch line continued: the 
form of the field equations



  

Some technical details.



  

The full tangent space.



  

The tangent space to the orbit.



  

Possible       .



  



  



  

An        associated to a curve c .



  

The main result.

The proof of this result is by a certain amount of integration by  
parts which I will omit.



  

The Hilbert “function”.



  

The variation is defined.



  

The Einstein-Hilbert field 
equations.



  

Passivity.



  



  



  



  

The “integration by 
parts”argument.



  



  



  


